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Constraint satisfaction problem
°

GRAPHS AND HOMOMORPHISMS

e A directed graph is a pair G = (G; E), where G is the set of
vertices and E C G? is the set of edges.

@ A relational structure is a tuple G = (G; E, ..., Ex), where
G is the underlying set and E; C G" is an nj-ary relation.

| A

Definition
A homomorphism from G = (G; E) to H = (H; F) is a map
f . G — H that preserves edges

(a,b) e E = (f(a),f(b)) € F.

We write G — H if there exists a homomorphism from G to H.




Constraint satisfaction problem
.

CONSTRAINT SATISFACTION PROBLEM (CSP)

Definition

For a finite relational structure H we define

CSP(H) = {G |G — H}.

Example

o CSP(/\) is the class of three-colorable graphs.
e CSP(}) is the class of bipartite graphs.




Constraint satisfaction problem
°

THE COMPUTATIONAL COMPLEXITY OF CSP

The membership problem for CSP(H)
@ always decidable in nondeterministic polynomial time (NP)

e is decidable in polynomial time (P) for some H

Dichotomy Conjecture (T. Feder, M. Vardi, 1993)

For every finite structure H the membership problem for CSP(H)
is in P or NP-complete.

The dichotomy conjecture holds when H

@ is an undirected graph (P. Hell, J. Ne3et¥il, 1990), or

@ has at most 3 elements (A. Bulatov, 2006), or

@ a smooth directed graph (L. Barto, M. Kozik, T. Niven, 2009).
Open for directed graphs.
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Example: solving a system of equations

(3X>Y>Z€Z5)(X+)/ZZ AN X+x=y A z:]_)
)
(ElX,y,ZGZ5)((X,y,Z)EF1 A (X,X,y)EFl VAN Z€F2),
where F; = {(x,y,z) €Z3 :x+y =1z} and F, = {1}.



Constraint satisfaction problem
°

Example: solving a system of equations

Ex,y,z€Zs)(x+y=z AN x+x=y N z=1)
)

(3x,y,z€ Zs)((x,y,z) € 1 N (x,x,¥) € F1 N z € F),
where F; = {(x,y,z) €Z} : x+y =2z} and Fp = {1}.
)

(3f :{1,2,3} — Z5)((f(1),7(2),f(3)) € F1 A

(f(1),f(1),f(2)) e L AN f(3) € F)



Constraint satisfaction problem
°

Example: solving a system of equations

(3X>Y>Z€Z5)(X+y:Z/\X—|—X:y/\z:]_)
T
(ElX,y,ZGZ5)((X,y,Z)EF1 A (X,X,y)EFl VAN Z€F2),
where Flz{(X,y,Z)€Z3'X+y:Z}and F2:{1}

)
(3F:{1,2,3} = Zs)((f(l),f( ) f(3)) € F1 A
(F(1),£(1),f(2)) € L A f(3) € F2)
)
if : G — H,

where G = ({1,2,3}; El, EQ), H = (25; Fl, F2)
E; ={(1,2,3), (1,1,2) }, & = {3}.
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°

Example: solving a system of equations

(3X>Y>Z€Z5)(X+y:Z/\X—|—X:y/\z:]_)
T
(ElX,y,ZGZ5)((X,y,Z)EF1 A (X,X,y)EFl VAN Z€F2),
where Flz{(X,y,Z)€Z3'X+y:Z}and F2:{1}

)
(3F:{1,2,3} = Zs)((f(l),f( ) f(3)) € F1 A
(F(1),£(1),f(2)) € L A f(3) € F2)
)
if : G — H,

where G = ({1,2,3}; El, EQ), H = (25; Fl, F2)
E; ={(1,2,3), (1,1,2) }, & = {3}.

)
G € CSP(H)



Constraint satisfaction problem
°

CSP REDUCTIONS: CORES

Lemma

For every finite relational structure H; there exists Hy such that
© M, is a directed graph (with unary relations),
@ H is a core, i.e., every endomorphism is bijective,
@ every singleton unary relation {a} is in Hp, and

CSP(H;) is polynomial time equivalent to CSP(Hy).

Proof of (2).

Take a homomorphism H; — Hy where H is a substructure of Hjy
of minimal size. Then H is a core by minimality. The natural
embedding Hy — H is also a homomorphism. Therefore

H; <> Hy and consequently CSP(H;) = CSP(H,). O]




Algebraic approach
CSP REDUCTIONS: POLYMORPHISMS

Definition

A polymorphism of H = (H; F) is a homomorphism p : H" — H,
that is a n-ary map that preserves edges

(a1,b1), .., (am bn) € F = (p(a1,-..,an), p(b1,. .., by)) € F.

Pol(H) ={p | p: H" — H} is the clone of polymorphisms.

Lemma

If Pol(H;) C Pol(Hy), then CSP(Hy) is polynomial time reducible
to CSP(Hl)

| \
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CSP REDUCTIONS: POLYMORPHISMS

A polymorphism of H = (H; F) is a homomorphism p : H" — H,
that is a n-ary map that preserves edges

(a1,b1), .., (am bn) € F = (p(a1,-..,an), p(b1,. .., by)) € F.

Pol(H) ={p | p: H" — H} is the clone of polymorphisms.

v

Lemma

If Pol(H;) C Pol(Hy), then CSP(Hy) is polynomial time reducible
to CSP(Hl)

Which polymorphisms guarantee that CSP(H) is in P?




Algebraic approach
[1e}

NICE POLYMORPHISMS

CSP(H) is in P if Pol(H) contains one of the following:

@ a semilattice operation (Jevons et. al.)
XANyrRyAx, xN(yANz)=(xAy)ANz, xAx=x.
@ a near-unanimity operation

Py, X, .., x) = p(X, ¥, X, o, X) & p(X, .., X, Y) R X,

a totally symmetric idempotent operation (Dalmau, Pearson),

a Maltsev operation (Bulatov, Dalmau)

p(x,y,y) = p(y,y,x) = x,

Generalized majority-minority operation (Dalmau).




Algebraic approach
oce

NICE POLYMORPHISMS CONT.

CSP(H) is in P if Pol(H) contains one of the following:

e Edge operations (Idziak, Markovié¢, McKenzie, Valeriote,
Willard)

p(y’y)X7X7“'7X)%X7
p(X7.y7.y7X7"'7X) %X7

p(X, X, X, ¥y ..oy X) R X,

p(x, X, X, X, ..., y) = X.

e Jonsson operations (Barto, Kozik),

e Willard operations (Barto, Kozik).




Algebraic approach
°

WEAK NEAR-UNANIMITY

Theorem (R. McKenzie, M. Maréti, 2008)

For a locally finite variety V the followings are equivalent:
e V omits type 1 (tame congruence theory),
@ V has a Taylor term,

@ V has a weak near-unanimity operation:

p(y,x,....,x)~ - =p(x,...,x,y) and p(x,...,x)~ x.

’

Theorem (B. Larose, L. Zadori, 2006)

If H is a core and does not have a Taylor (or weak near-unanimity)
polymorphism, then CSP(H) is NP-complete.

Algebraic dichotomy conjecture

| A\

If H is a core and has a weak near-unanimity polymorphism, then
CSP(H) is in P.




Algebraic approach
APPLICATIONS TO UNIVERSAL ALGEBRA

Theorem (P. Markovic, R. McKenize, M. Siggers, 2008)

A locally finite variety V omits type 1 iff it has a 4-ary term t
satisfying the equations

t(x,y,z,x) = t(y,z,x,z) and t(x,x,x,x) = x.

Proof.
Consider the directed graph G defined Y.
on the 3-generated free algebra F3()) whose

edges are generated by (x, y), (v, z), (z,x), (x, 2).

It is smooth, and its core must be a loop.
That loop edge is t((x, y), (v, 2), (z, x), (x, 2)).

X Z




Local consistency
.

STRATEGIES

Definition
Let H be an idempotent algebra and G be a set of variables. A
collection

R={R;<H?:ijecG}
of binary constraint relations is a binary strategy, if
° Rj=R;' and
o Ri C{(a,a):ac H}
A map f: G — H is a solution if (f(i),f(j)) € Rjj forall i,j € G.

Lemma
Every CSP problem is polynomial time equivalent to

CSP(S(H?)) = {all binary strategies of H that have a solution}.




Local consistency
°

LOCAL CONSISTENCY ALGORITHM

The binary strategy R is (2,3)-consistent, if

Rix C RijoRjk for all i,j, k € G.

The (2,3)-consistency algorithm turns a binary strategy R into a
(2,3)-consistent binary strategy without loosing solutions:

I{k = R,'k N (R,J o R]k)

@ runs in polynomial time (in the size of R),
@ the output is independent of the choices made,
e if the output strategy is empty, then R ¢ CSP(S(H?)).

A\




Local consistency
°

BOUNDED WIDTH

Definition

An algebra H has width (2, 3) if every nonempty (2, 3)-consistent
binary strategy of H has a solution.

Theorem (A. Bulatov, A. Krokhin, P. Jeavons, 2000)
If H has width (2,3) (or bounded width), then
o CSP(S(H?)) isin P
e HSP(H) omits types 1 and 2, i.e., H has Willard terms.

Theorem (L. Barto, M. Kozik, 2009)

If the variety generated by H omits types 1 and 2, then H has
bounded width.
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°

CONSISTENT MAPS

Definition
Let R = {R; <H?|i,j € G} be a binary strategy. A collection

of maps
P={pi:H—-H|ieG}

is consistent, if p; x p; preserves R for all i,j € G, i.e.

(av b) € RU = (Pi(a),Pj(b)) € R,'j.
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Consistent maps
°

CONSISTENT MAPS

Definition

Let R = {R; <H?|i,j € G} be a binary strategy. A collection
of maps

P={p:H-H|icG}

is consistent, if p; x p; preserves R for all i,j € G, i.e.

(av b) € RU = (Pi(a),Pj(b)) € R,'j.

The identity maps p;(x) = x are always consistent.

(]

If f is a solution of R, then the constant maps p;(x) = (i)
are consistent.

Consistent maps can be composed pointwise.

Consistent maps map solutions to solutions.



Consistent maps
®0

FINDING CONSISTENT MAPS

Consistent maps are solutions of a larger CSP instance:

Definition

Let R = {R; <H?|i,j € G} be a binary strategy. A collection
of maps { p; | i € G } is consistent if and only if the binary strategy
R’ with

@ variable set G’ = G x H and

@ relations

0 . RU if (a, b) € R,'j,
(ia)(jb) — H x H otherwise

has

f'((i,a)) = pi(a)

as a solution.




Consistent maps
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FINDING CONSISTENT MAPS CONT.

Lemma

For any binary term t(x,y) and a solution f of the binary strategy
R ={R; <H?|ij€e G} the maps

{pilx) = t(f(i),x) [ i€ G}

are consistent.

e We can assume that t(x, t(x,y)) = t(x, y) in which case the
consistent maps become idempotent p;(p;i(y)) = pi(y).

@ We can add non-unary constraints to R’ such that p; become
polynomials.

@ We can limit the domain of the variable (i, a) € G’ to

t(a, H) = {t(a,y) [y e H}.
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USING CONSISTENT MAPS

@ We have to use multisorted strategies.
@ We decompose CSP problems into easier problems.
@ We assume that “smaller” strategies are in P.

o If |t(a, H)| < |H| for all a € H, then we are in a “smaller”
case (e.g. algebras with a non-chain semilattice factor)

@ So we can find a consistent set P of maps for R.

@ P maps solutions to solutions, so we can find a solution of R
in a smaller case provided that |[{ pi(x) : x € H}| < |H].

e We step outside of the variety (we use an idempotent image
of an algebra), but the linear identities are preserved.
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RESuULTS

Let H be an algebra and t be a binary term such that for each

a € H the map t,(x) = t(a, x) is idempotent and not surjective.
Let B be the set of elements b € H such that the map x — t(x, b)
is a permutation. If B generates a proper subuniverse of H, then H
can be eliminated from CSP problems.

Applications:
@ three element structures,
@ tree over Maltsev,

@ conservative algebras (partially).
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