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Bolyai Institute, University of Szeged, Hungary

SSAOS, 2010. September 6.



Constraint satisfaction problem Algebraic approach Local consistency Consistent maps

Graphs and homomorphisms

Definition

A directed graph is a pair G = (G ; E ), where G is the set of
vertices and E ⊆ G 2 is the set of edges.

A relational structure is a tuple G = (G ; E1, . . . ,Ek), where
G is the underlying set and Ei ⊆ Gni is an ni -ary relation.

Definition

A homomorphism from G = (G ; E ) to H = (H; F ) is a map
f : G → H that preserves edges

(a, b) ∈ E =⇒ (f (a), f (b)) ∈ F .

We write G→ H if there exists a homomorphism from G to H.
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Constraint satisfaction problem (CSP)

Definition

For a finite relational structure H we define

CSP(H) = {G | G→ H }.

Example

CSP( s ss�A ) is the class of three-colorable graphs.

CSP( ss) is the class of bipartite graphs.

G = = H

f : G→ H
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The computational complexity of CSP

The membership problem for CSP(H)

always decidable in nondeterministic polynomial time (NP)

is decidable in polynomial time (P) for some H

Dichotomy Conjecture (T. Feder, M. Vardi, 1993)

For every finite structure H the membership problem for CSP(H)
is in P or NP-complete.

The dichotomy conjecture holds when H
is an undirected graph (P. Hell, J. Nešeťril, 1990), or

has at most 3 elements (A. Bulatov, 2006), or

a smooth directed graph (L. Barto, M. Kozik, T. Niven, 2009).

Open for directed graphs.
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Example: solving a system of equations

(∃x , y , z ∈ Z5)(x + y = z ∧ x + x = y ∧ z = 1)

m
(∃x , y , z ∈ Z5)((x , y , z) ∈ F1 ∧ (x , x , y) ∈ F1 ∧ z ∈ F2),

where F1 = { (x , y , z) ∈ Z3
5 : x + y = z } and F2 = {1}.
m

(∃f : {1, 2, 3} → Z5)((f (1), f (2), f (3)) ∈ F1 ∧
(f (1), f (1), f (2)) ∈ F1 ∧ f (3) ∈ F2)

m
∃f : G→ H,

where G = ({1, 2, 3}; E1,E2), H = (Z5; F1,F2)

E1 = { (1, 2, 3), (1, 1, 2) }, E2 = {3}.
m

G ∈ CSP(H)
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CSP reductions: cores

Lemma

For every finite relational structure H1 there exists H2 such that

1 H2 is a directed graph (with unary relations),

2 H2 is a core, i.e., every endomorphism is bijective,

3 every singleton unary relation {a} is in H2, and

CSP(H1) is polynomial time equivalent to CSP(H2).

Proof of (2).

Take a homomorphism H1 → H2 where H2 is a substructure of H1

of minimal size. Then H2 is a core by minimality. The natural
embedding H2 → H1 is also a homomorphism. Therefore
H1 ↔ H2 and consequently CSP(H1) = CSP(H2).
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CSP reductions: polymorphisms

Definition

A polymorphism of H = (H; F ) is a homomorphism p : Hn → H,
that is a n-ary map that preserves edges

(a1, b1), . . . , (an, bn) ∈ F =⇒ (p(a1, . . . , an), p(b1, . . . , bn)) ∈ F .

Pol(H) = { p | p : Hn → H } is the clone of polymorphisms.

Lemma

If Pol(H1) ⊆ Pol(H2), then CSP(H2) is polynomial time reducible
to CSP(H1).

Question

Which polymorphisms guarantee that CSP(H) is in P?
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Nice polymorphisms

Theorem

CSP(H) is in P if Pol(H) contains one of the following:

a semilattice operation (Jevons et. al.)

x ∧ y ≈ y ∧ x , x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z , x ∧ x ≈ x .

a near-unanimity operation

p(y , x , . . . , x) ≈ p(x , y , x , . . . , x) ≈ · · · ≈ p(x , . . . , x , y) ≈ x ,

a totally symmetric idempotent operation (Dalmau, Pearson),

a Maltsev operation (Bulatov, Dalmau)

p(x , y , y) ≈ p(y , y , x) ≈ x ,

Generalized majority-minority operation (Dalmau).
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Nice polymorphisms cont.

Theorem

CSP(H) is in P if Pol(H) contains one of the following:

Edge operations (Idziak, Marković, McKenzie, Valeriote,
Willard)

p(y , y , x , x , . . . , x) ≈ x ,

p(x , y , y , x , . . . , x) ≈ x ,

p(x , x , x , y , . . . , x) ≈ x ,

...

p(x , x , x , x , . . . , y) ≈ x .

Jónsson operations (Barto, Kozik),

Willard operations (Barto, Kozik).
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Weak near-unanimity

Theorem (R. McKenzie, M. Maróti, 2008)

For a locally finite variety V the followings are equivalent:

V omits type 1 (tame congruence theory),

V has a Taylor term,

V has a weak near-unanimity operation:

p(y , x , . . . , x) ≈ · · · ≈ p(x , . . . , x , y) and p(x , . . . , x) ≈ x .

Theorem (B. Larose, L. Zádori, 2006)

If H is a core and does not have a Taylor (or weak near-unanimity)
polymorphism, then CSP(H) is NP-complete.

Algebraic dichotomy conjecture

If H is a core and has a weak near-unanimity polymorphism, then
CSP(H) is in P.
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Applications to universal algebra

Theorem (P. Markovic, R. McKenize, M. Siggers, 2008)

A locally finite variety V omits type 1 iff it has a 4-ary term t
satisfying the equations

t(x , y , z , x) ≈ t(y , z , x , z) and t(x , x , x , x) ≈ x .

Proof.

Consider the directed graph G defined
on the 3-generated free algebra F3(V) whose
edges are generated by (x , y), (y , z), (z , x), (x , z).
It is smooth, and its core must be a loop.
That loop edge is t((x , y), (y , z), (z , x), (x , z)).
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Strategies

Definition

Let H be an idempotent algebra and G be a set of variables. A
collection

R = {Rij ≤ H2 : i , j ∈ G }

of binary constraint relations is a binary strategy, if

Rij = R−1ji , and

Rii ⊆ { (a, a) : a ∈ H }.
A map f : G → H is a solution if (f (i), f (j)) ∈ Rij for all i , j ∈ G .

Lemma

Every CSP problem is polynomial time equivalent to

CSP(S(H2)) = {all binary strategies of H that have a solution}.
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Local consistency algorithm

Definition

The binary strategy R is (2,3)-consistent, if

Rik ⊆ Rij ◦ Rjk for all i , j , k ∈ G .

Definition

The (2,3)-consistency algorithm turns a binary strategy R into a
(2,3)-consistent binary strategy without loosing solutions:

R ′ik = Rik ∩ (Rij ◦ Rjk).

runs in polynomial time (in the size of R),

the output is independent of the choices made,

if the output strategy is empty, then R 6∈ CSP(S(H2)).
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Bounded width

Definition

An algebra H has width (2, 3) if every nonempty (2, 3)-consistent
binary strategy of H has a solution.

Theorem (A. Bulatov, A. Krokhin, P. Jeavons, 2000)

If H has width (2, 3) (or bounded width), then

CSP(S(H2)) is in P

HSP(H) omits types 1 and 2, i.e., H has Willard terms.

Theorem (L. Barto, M. Kozik, 2009)

If the variety generated by H omits types 1 and 2, then H has
bounded width.
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Consistent maps

Definition

Let R = {Rij ≤ H2 | i , j ∈ G } be a binary strategy. A collection
of maps

P = { pi : H → H | i ∈ G }

is consistent, if pi × pj preserves Rij for all i , j ∈ G , i.e.

(a, b) ∈ Rij =⇒ (pi (a), pj(b)) ∈ Rij .

The identity maps pi (x) = x are always consistent.

If f is a solution of R, then the constant maps pi (x) = f (i)
are consistent.

Consistent maps can be composed pointwise.

Consistent maps map solutions to solutions.
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Finding consistent maps

Consistent maps are solutions of a larger CSP instance:

Definition

Let R = {Rij ≤ H2 | i , j ∈ G } be a binary strategy. A collection
of maps { pi | i ∈ G } is consistent if and only if the binary strategy
R′ with

variable set G ′ = G × H and

relations

R′(ia)(jb) =

{
Rij if (a, b) ∈ Rij ,

H×H otherwise

has
f ′((i , a)) = pi (a)

as a solution.
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Finding consistent maps cont.

Lemma

For any binary term t(x , y) and a solution f of the binary strategy
R = {Rij ≤ H2 | i , j ∈ G } the maps

{ pi (x) = t(f (i), x) | i ∈ G }

are consistent.

We can assume that t(x , t(x , y)) = t(x , y) in which case the
consistent maps become idempotent pi (pi (y)) = pi (y).

We can add non-unary constraints to R′ such that pi become
polynomials.

We can limit the domain of the variable (i , a) ∈ G ′ to

t(a,H) = { t(a, y) | y ∈ H }.
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Using consistent maps

We have to use multisorted strategies.

We decompose CSP problems into easier problems.

We assume that “smaller” strategies are in P.

If |t(a,H)| < |H| for all a ∈ H, then we are in a “smaller”
case (e.g. algebras with a non-chain semilattice factor)

So we can find a consistent set P of maps for R.

P maps solutions to solutions, so we can find a solution of R
in a smaller case provided that |{ pi (x) : x ∈ H }| < |H|.
We step outside of the variety (we use an idempotent image
of an algebra), but the linear identities are preserved.
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Results

Theorem

Let H be an algebra and t be a binary term such that for each
a ∈ H the map ta(x) = t(a, x) is idempotent and not surjective.
Let B be the set of elements b ∈ H such that the map x 7→ t(x , b)
is a permutation. If B generates a proper subuniverse of H, then H
can be eliminated from CSP problems.

Applications:

three element structures,

tree over Maltsev,

conservative algebras (partially).
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